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　　Abstract　　A multi-layer zone fire g row th model is developed to predict the vertical dist ributions of the temperature in a single

room .The f ire room volume is divided into a number of horizontal layers , in which the tem perature and other physical p roperties are as-

sumed to be uniform.The principal equations for each laminated horizontal layer are derived f rom the conservation equations of mass and

energy.The implemented f ire sub-models are int roduced, including the combustion , fluid f low and heat t ransfer models.Combined w ith

these sub-models , the zone equat ions for the gas temperature of each layer are solved by Runge-Kut ta method for each tim e step.T he re-
sult s of the sample calculat ions compare well w ith the results of experiments conducted by Steckler et al.
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　　Modeling of fire in a compartment can be

achieved either using a zone modeling method or a

computational fluid dynamics (CFD) modeling

method.The most common zone model is the tw o-
zone model.The main character of this model is that
i t divides the room(s)into a hot , upper layer and a
cooler , lower layer , and that the phy sical properties
of each layer , such as its gas temperature and species
concentrations are all uniform.Some models of this
type have been developed[ 1～ 3] , and a comprehensive
review of the existing two-zone fire models can be
found in reference [ 4] .The computational f luid dy-
namics(CFD)model can predict temperature and ve-
locity field profiles throughout the domain of inter-
est[ 5] .Three-dimensional time-dependent equations
describing the fluid dynamics can be solved numerical-
ly under the surface conditions specif ic to the prob-
lem .An advantage of CFD models is that they can

predict details of temperature and velocity distribu-
tions in the domain of interest , while zone models can
only give average temperatures in only one layer o r

tw o.Moreover , CFD models need tremendous CPU

time.In a complicated case , it might take more than
a couple of days to simulate only one minute of the re-
al fire process.

In a room fire experiment , a st ratified layer situ-
ation can be observed , but the layer interface is not
always clear and the temperature varies rather gradu-
ally with height.Therefore , if a model is av ailable fo r

predicting the vertical temperature profile , more ac-
curate analyses of fire may be possible w ith a reduced

computation time.

In this study , a new zone modeling approach ,
which we call the multi-layer zone model , is proposed
to predict vertical dist ributions of temperature in a

fi re compartment.In this model , the space volume in
a compartment is divided into an arbit rary number of

layers as the control volumes (see Fig .1), and the
physical properties , such as temperature and species
concentrations in each layer are assumed to be uni-
form.The boundary w alls are also divided into seg-
ments in accordance w ith the layer division.The ra-
diation heat transfer between the layers , and between
the layers and the w all segments are calculated , as
well as the convective heat t ransfer between the layers

and the wall segments.This model st ill retains the
advantages of zone models and it is expected to be

useful fo r practical applications on fire safety design of

building s.

1　Governing equations

The concept of the multi-layer zone model is il-
lust rated in Fig .1.One notable dif ference of the

model f rom the existing tw o-layer zone models is that
the fire plume flow does no t mix w ith the upper layer

as soon as it penet rates a layer interface , but contin-
ues to rise until it hi ts the ceiling , and then it pushes



Fig.1.　Illustrat ion of the mult i-layer zone model.

down the gases in the top layer.Like the two-zone
models , the principal equat ions for each laminated

horizontal layer are derived f rom the conservation e-
quations of mass , internal energy , and species f rac-
tion.

From Fig.2 , we obtain the mass conservation e-
quation:
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where ρi and V i are the density and volume of the i-

th(1≤i≤n-1)lay er;m
·
fp , i is the mass flow rate at

the i-th and the (i+1)-th layer interface inside the

fire plume.The term m
·
fp , i -m

·
fp , i-1 deno tes the rate

of mass entrained into the f ire plume from the i-th

layer;m· 1 , i is the net mass f low rate f rom the i-th
layer to the (i-1)-th layer through the surface out-

side the fire plume;m
·
out , i is the mass flow rate f low-

ing out through the opening f rom the i-th layer , and

m
·′

in , i is the mass gain rate of the i-th lay er transport-

ed by the cold plume from the opening.For the top
layer , considering that the mass rate of g as entrained
into the fire plume is eventually t ransported to this

layer , the mass conservation becomes

Fig.2.　Mass conservation of i-th layer.
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From Fig .3 , we obtain the energy conservat ion
equat ion
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where Cp is the specific heat;T i is the temperature of

the i-th layer , Qw , i is the convection heat loss to the

w all surface f rom the i-th layer , Q r , i is the net radia-
tion heat gain of the i-th layer.The second and third

terms show that , if m
·
1 , i+1 is positive , the net f low

through the interface of the (i +1)-th and the i-th
layers is dow nw ard , otherw ise upw ard.

Fig.3.　Energy conservation of i-th layer.

For the top layer , considering that the heat re-
leased by the combustion is t ransported to the layer

through the fi re plume , the energy conservat ion is

w ri tten as:

d
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(4)

Considering that a fire is basically a phenomenon

at atmospheric pressure , the equation of state of the
ideal gas in this model is simplified as:

ρiT i =const. (5)
Note that the lef t-hand side of Eq.(3)can be ex-
panded as:

d
dt(CpρiV iT i)=CpρiV i

d T i

dt +Cp Ti
d
d t(ρiV i).

(6)
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The zone governing equation for temperature of each

layer is derived by subst ituting Eqs.(1)and(3)into
Eq.(6), and w e obtain
d Ti
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For the top layer , substituting Eqs.(2)and(4)into
Eq.(6)y ields
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2　Fire models

Equations(5), (7)and (8)can be integ rated
using Runge-Kutta method for the temperature of

each layer.However , to complete this equation sys-
tem , the rate terms in the equations must be formu-
lated based on the relevant modeling of component

processes of fire.This section deals with these sub-
fire models.The implemented fire sub-models include
the heat t ransfer , combust ion and fluid flow models.

Heat t ransfer models include conduction heat

transfer , convection heat transfer and radiat ion heat
transfer models.

To calculate the conduction heat t ransfer through

the compartment boundaries , a one-dimensional and
transient conduction model is used.The governing e-
quation is as follow s:
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where k w , ρw and cw are the thermal conduct ivity ,
densi ty and specific heat of boundaries.

In the compartment , the rate of the convection
heat t ransfer f rom the i-th layer to the w all boundary
is calculated by

qw , i =h(T i -T w , i , 0)Aw , i ,

where Tw , i , 0 is the temperature of the w all boundary

around the i-th layer , and h is the convection heat

t ransfer coefficient and h is computed using empirical

correlations based on Grashof , Prandtl and Nusselt

numbers.The details can be found in Ref.[ 2] .

Radiat ion heat transfer is a very impo rtant mech-
anism in compartment fires , especially in the f ire

room .In this w ork , a three-surface model of upper
layer , low er layer , and w all fraction is int roduced.
The smoke layer is considered to be an absorptive

medium.The follow ing radiation heat t ransfer equa-
tion for each surface element k is used[ 6 ,7]
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where q j is the net radiation heat t ransfer rate of sur-
face j;εj is the emissivi ty of surface j;δkj is the
Kronecker delta , δkj =1 , when k =j , and δkj =0 ,
when k ≠j;Fk-j is the view factor f rom surface k to

j;Tj and T g are the temperatures of surface j and

gas; τk-j and  αk-j are geometrical mean transmit-
tance and abso rptance f rom surfaces k to j;q1 , q2
and q3 can be calculated by solving linear algebraic e-
quations using Gauss-Jordan elimination method.

The combustion models deal wi th the heat re-
lease rate of combustible materials in a compartment.
The heat release rate in unconstrained combustion can

be obtained by

Q c = m
·
b ·ΔH ·χ,

where ΔH is the ef fective heat of combustion per unit

kilogram fuel in open air , m
·
b is the mass burning

rate , and χis efficiency facto r which takes into ac-
count incomplete combustion.

For a w ide range of f ires , the fire grow th can be
accurately represented by a set of specific T-squared
fi res[ 8] labeled slow , medium , and fast

Qc =αt
2 ,

where αis the fire intensi ty coef ficient , representing
fi res reaching 1055 kW in 600 s , 300 s , and 150 s.

Fluid f low models include plume entrainment ,
mass flow rate through opening and mass flow rate

through surfaces of layers.

Fire-induced buoyant plume entrainment is a
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very impo rtant factor in modelling f ire g row th and

smoke spread in a building.A number of formulas

can be found in Refs.[ 9 ～ 11] .Zukoski' s model is
used as default in this model

m p =0.21
ρ
2
∞g

cp T ∞

1/ 3

Q
· 1/3
c z

5/3
,

where Q
·
c (kW)is the heat release rate , and z is

height f rom floo r.

Mass f low through a vertical vent is driven by

the pressure difference between the two sides of the

vent , and it can be calculated by integrating Bernoul-
l i' s equation along the vertical direction of the

vent
[ 12]
,
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where A and h are the area and height of this part of

vent , Cd is the coeff icient of vent flow , which is typ-
ically taken as 0.7 and N is the neutral plane loca-
tion.

The enthalpy flow rate through the surface of

the top layer to the lower layer outside the fire plume

is obtained using Eq.(8)and Eq.(5)
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The enthalpy flow rate through the interface of the

(i+1)-th and the i-th layer is calculated layer by

layer , using the enthalpy flow rate through the upper

surface as follows:
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When h i is negat ive , the net flow through the surface

is upw ard , otherw ise dow nw ard.Thus the net mass
flow rate through the surface is

m
·
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(h i ≥0),

m
·
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h i

Ti-1
(h i <0).

3　Model prediction and comparison with ex-
periments

3.1　Examples of model predictions

An example of model prediction is presented here.
The input data of the model are show n in Table 1.The

compartment is divided into 8 layers.The fire is as-
sumed to be slow T-squared fi res[ 8] at 1055 kW.It
reaches it s maximum at 600 s and remains stable at

1800 s , then i t decays to zero at 600 s.The predicted
temperature histo ry of each layer is show n in Fig .4.

Table 1.　Model input data for a single compartment example

Dimensions

Depth(m) Width(m) Height(m)

Compartment 3.0 4.0 3.0

Opening N/A 0.8 2.0

Physical and therm al p roperties of

compartment boundaries

Ceiling Wall Floor

Thickness(cm) 20 15 15

Density(kg/m 3) 1600 1600 1600

Conduct ivi ty (W/mK) 0.8 0.7 0.7

Specif ic heat (J/ kg·K) 840 840 840

Surface Emissivity 0.8 0.8 0.8

　 　 T he ambient conditions of p ressure and temperature are

101 , 300 Pa and 20 ℃, respectively.

Fig.4.　Predicted temperatu re history.(Room :3 m ×4 m ×
3 m , Door:0.8 m × 1.8 m;Fire:Medium T-Square Fire

(1 MW);Layer number:8).

3.2　Comparison with experimental data

Steckler et al.[ 13] carried out a series of f ire ex-
periments wi thin a compartment to investig ate fire in-
duced f low s.The experimental data obtained from
these fi re tests have been used as part of the validat ion

process for both zone model and CFD model.The da-
ta represents non-spreading fires in small compart-
ments.A series of 45 experiments were conducted by

Steckler et al.to investigate f ire induced f low s in a
compartment 2.8m ×2.8 m in plane and 2.18 m in

height (see Fig .5).The w alls and ceiling w ere

0.1m thick and they w ere covered w ith a ceramic f i-
bre insulation board to establish nearly steady state

conditions wi thin 30 minutes.The series of experi-
ments consisted of a g as burner placed sy stematically

in 8 dif ferent f loor locations w ith a variety of sing le

compartment openings ranging f rom small w indow s to

w ide doo rs.The door openings are 0.24 m to
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0.99 m.The 0.3 m diameter burner w as supplied

w ith commercial g rade methane at fixed rates produc-
ing constant fire strengths of 31.6 , 62.9 , 105.3 and
158 kW.

Fig.5.　S etup of S teckler' s experiment.

The conditions of the calculations such as the ge-
ometry of the w alls and the opening , the initial ai r
temperature in the compartment and the heat release

rate are determined basically by the experimental con-
di tions for each case.The room volume is divided into

18 layers.The flow rate through surfaces of layers ,
the temperature of gas is calculated at every 0.1 sec-
ond.Fig .6 show s the vertical dist ribution of the tem-
perature f rom the experiment (Test 14 , HRR

62.9 kW , 6/6 Door and Fire at location A)at steady
state stage and predict ions by the model at 1000 sec.
(when it is almost in steady-state).The predicted
temperature dist ributions of the room at 1000 sec.
generally ag ree wi th the experiment (also for other
cases).However , the hot upper layers are thinner by
0.1 ～ 0.3 m than the experiments.This is inf luenced
mainly by the accuracy of fire models especially plume

entrainment and mass f low rate through opening

models.A continuing effo rt should be made to refine

the model.

Fig.6.　Predicted vert ical distribution of the temperature com-
pared w ith experiment.(Room:2.8 m×2.8 m ×2.18 m , Door:

0.74 m×1.83 m;HRR:62.9 kW;Layer number:18).

4　Conclusions

The multi-layer zone model is based on the con-
cept of zone models but dif ferent w ith the tw o-zone
models.Comparisons of this model w ith experiment
show that the model is applicable for engineering pur-
pose.As we expected , it is more detailed and accu-
rate than tw o-zone models and i t is less time-consum-
ing than Field models.
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